Pharmaceutical Quality by Design Using JMP: Solving Product Development and Manufacturing Problems, Paperback/Rob Lievense
Descriere
Description Solve your pharmaceutical product development and manufacturing problems using JMP . Pharmaceutical Quality by Design Using JMP: Solving Product Development and Manufacturing Problems provides broad-based techniques available in JMP to visualize data and run statistical analyses for areas common in healthcare product manufacturing. As international regulatory agencies push the concept of Quality by Design (Qb D), there is a growing emphasis to optimize the processing of products. This book uses practical examples from the pharmaceutical and medical device industries to illustrate easy-to-understand ways of incorporating Qb D elements using JMP. Pharmaceutical Quality by Design Using JMP opens by demonstrating the easy navigation of JMP to visualize data through the distribution function and the graph builder and then highlights the following: the powerful dynamic nature of data visualization that enables users to be able to quickly extract meaningful information tools and techniques designed for the use of structured, multivariate sets of experiments examples of complex analysis unique to healthcare products such as particle size distributions/drug dissolution, stability of drug products over time, and blend uniformity/content uniformity. Scientists, engineers, and technicians involved throughout the pharmaceutical and medical device product life cycles will find this book invaluable. This book is part of the SAS Press program. About the Author Rob Lievense is a Research Fellow of Global Statistics at Perrigo, as well as an active professor of statistics at Grand Valley State University (GVSU), located in Allendale, Michigan. At Perrigo, he leads a group that supports the consumer health care research and development department with statistical analysis, data visualization, advanced modeling, data-driven Quality by Design for product development, and structured experimental design planning. Rob has more than 20 years of experience in the applied statistics in